
1

Framebuffer Modifiers
Supporting end-to-end graphics compression

Ben Widawsky

2

About Me

● Worked on all parts of graphics and
other driver stacks

● Avid Buffer Modifier
● Motivated by disparity with closed

implementations
○ If they can do it; damn it, we can too.

3

Summarizing the Work
Linux DRM

● blobifier
● AddFB2
● multi-plane

Linux i915
● blobifier
● AddFB2

Mesa
● DRI
● EGL
● ANV
● RADV
● other

Protocol
● DRI3.1

○ X.org
○ xcb

● Wayland
○ Mutter
○ Weston

Khronos
● image_dma_buf_import_mod

ifiers
● VK_EXT_external_*

Intel ✔ ✔ ✔ ✔ ✔

Collabora ✔ ✔ ✔ ✔ ✔

Google ✔ ✔ ✔

Others ✔ ✔ ✔

4

Status

● Many years in the making: almost there!
● Early modifier support already released: Mesa 17.2, Kernel 4.14
● Full compression support soon:

○ Modesetting
○ Wayland/Mutter?
○ X.org/DRI3

■ Mesa DRI3 support
■ Mesa Wayland support

5

Mountains out of Molehills?
● Each EU needs 1GB/s bandwidth

○ Texturing (trilinear, anisotropic)
○ Transparency/Blending
○ Antialiasing

● Display
○ 3840 px * 2160 rows * 4 Bpp * 60 Hz = 1.85GB/s
○ It keeps getting worse

■ Increasing resolutions (5K, 8K)
■ Increasing refresh rates (120Hz, 240 Hz)

● Workloads are already memory bandwidth limited
○ Can’t scale up compute without more bandwidth
○ Reduce visual effects
○ Decrease resolution

Giant
Salt
Grain

6

Admiring the Problem

7

Texture Upload

The application needs to get its assets (geometry
data, texture data, precompiled shaders, etc.) into
memory from storage.

8

B
a
n
d
w
i
d
t
h

Quality

nearest

trilinear

Anisotropic
16 trilinear probes

bilinear

Texturing Fetch/Filtering

1x-2x

4x

8x

128x

9

Sampling/Writing #version 330

uniform sampler2D tex;
in vec2 texCoord;
out vec4 fragColor;

void main() {
vec4 temp = texelFetch(tex, ivec2(texCoord));
fragColor = temp;

}

10

Compositing
Compositor is responsible for taking client
application’s window contents and amalgamates
into a single image for display.

Like a window manager, but with offscreen
buffers

● Needs to read from application’s rendered
data, and write to the screen

terminal browser

Screen

Compositor

terminal

browser

11

Display Engine
Specialized, fixed function hardware which
sources pixel data and pushes it out over some
display protocol; possibly blending, and scaling
the pixels along the way.

hblank hblankvblank
HDMIDEDMA

pixels

Push out
pixels

12

Bytes Per ComponentBandwidth Costs
Operation Color Depth Desc. Bandwidth R/W

Texture Upload 1Bpc (RGBX8) File to DRAM 16KB (64 * 64 * 4) W

Texel Fetch 1Bpc (RGBX8) DRAM to Sampler 16KB (64 * 64 * 4) R

FB Write 1Bpc (RGBX8) GPU to DRAM 16KB (64 * 64 * 4) W

Compositing 1Bpc (RGBX8) DRAM to DRAM 32KB (64 * 64 * 4 * 2) R+W

Display Scanout 1Bpc (RGBX8) DRAM to PHY 16KB (64 * 64 * 4) R

Total Bandwidth = (16 + 16 + 16 + 32 + 16) * 60Hz = 5.625 MB/s

13

At Least it Looks Better

Filter Mode Multiplier (texel fetch stage) Total Bandwidth

Nearest 1x 5.625 MB/s

Bilinear 4x 11.25 MB/s

Trilinear 8x 18.75 MB/s

Aniso 4x 32x 63.75 MB/s*

Aniso 16x 128x 243.75 MB/s*

* Oblique angle + implementation details would reduce further

14

Proposed Solution: Increase Headroom

Technology (~2013) Technology (~2016) Improvement

DDR3-2133
34GB/s (dual channel)

DDR4-3200
51.2 GB/s (dual channel)

50%

GTX 780 (Kepler)
GDDR5 288 GB/s

GTX1080 (Pascal)
GDDR5X 352 GB/s

22%

Radeon R9 290X (Hawaii)
GDDR5 (320GB/s)

Radeon R9 Fury -(Fiji)
HBM1 512GB/s

60%

LPDDR3-1600
12.8 GB/s (single channel)

LPDDR4-3200
25.6 GB/s (single channel)

100%

Color Depth Operation Bandwidth

1Bpc Texture Upload 16KB (64 * 64 * 4)

1Bpc Texel Fetch 16KB (64 * 64 * 4)

1Bpc FB Write 16KB (64 * 64 * 4)

1Bpc Composite 32KB (64 * 64 * 4 * 2)

1Bpc Scanout 16KB (64 * 64 * 4)

Total Bandwidth = 5.625 MB/s

15

Proposed Solution: Hardware Composition
Hardware is capable of having multiple
hardware planes. Use them.

Color Depth Operation Bandwidth

1Bpc (RGBA8) Texture Upload 16KB (64 * 64 * 4)

1Bpc (RGBA8) Texel Fetch 16KB (64 * 64 * 4)

1Bpc (RGBA8) FB Write 16KB (64 * 64 * 4)

1Bpc (RGBA8) Composite 32KB (64 * 64 * 4 * 2)

1Bpc (RGBA8) Scanout 16KB (64 * 64 * 4)

Total Bandwidth = 3.75 MB/s (33% savings)

16

Proposed Solution: Texture Compression

● DXT1 (8:1)
● ETC1/2 (4:1)
● ASTC (variable, 6:1)

Color Depth Operation Bandwidth

DXT1 Texture Upload 16KB / 8

DXT1 Texel Fetch 16KB /8

1Bpc FB Write 16KB (64 * 64 * 4)

1Bpc Composite 32KB (64 * 64 * 4 * 2)

1Bpc Scanout 16KB (64 * 64 * 4)

Total Bandwidth = 3.925 MB/s (30%)

17

Problems (Increase Bandwidth)

1. Limited by process and design
2. Costly for manufacturing

a. New memory modules
b. New boards
c. Utilizes new fabrication process

3. May be power hungry

Rating: Sure. Won’t hold my breath

18

Problems (More Planes)

1. Hardware specific
a. Not all hardware can

composite the same number of
planes

2. Max planes is small
a. Increasing this significantly

isn’t feasible (die size)
3. Only helps compositing step

Rating: Great, doesn’t scale

19

Problems (Texture Compression)

1. May be lossy
2. Hardware compatibility

a. Better formats require new hardware
b. Increased gate counts

3. Patents or proprietary
4. Misses display improvement
5. Doesn’t play nicely with all filtering

methods (aniso)

Scaling onlyOriginal DXT1

Rating: Great, but lacking

20

Introducing E2E Lossless Compression

Pros
● Lossless
● Transparent to applications/tools

○ Easier development
○ Hardware improvements automatically help

● No offline compression necessary
● Compression benefits through display
● Can be huge when texturing is small amount of

bandwidth consumption

Cons
● Relatively low compression

○ 2:1 max on current Intel
○ 4:1 max seems to be industry standard
○ Not everything will be compressible

■ Will never get max.
● Limited by hardware

○ However, many GPUs getting this
■ UBWC (Qualcomm), AFBC (ARM),

DCC (AMD), DCC (Nvidia), PVRIC
(Imagination)

● Supplement other bandwidth saving techniques
○ Doesn’t reduce size (in fact internally things get larger).

● Internal hardware blocks compress/decompress on the fly.
○ Display
○ Media
○ Texture units

21

Several Opportunities for Savings

Reduced
Bandwidth

Reduced
Bandwidth

Reduced
Bandwidth

BLORP
Upload

22

Dumb Example
Naive implementation will get 2:1 compression
when a pair of cachelines has 12 or less colors

CCS cacheline = 32K main frame

23

E2E Bandwidth Savings (2:1 compression)
Operation Color Depth Desc. Bandwidth R/W

Texture Upload 1Bpc (RGBX8) File to DRAM 16KB (64 * 64 * 4) W

Texel Fetch 1Bpc (RGBX8) DRAM to Sampler 16KB (64 * 64 * 4) R

FB Write Compressed (2:1) GPU to DRAM 16KB (64 * 64 * 4) / 2 W

Compositing Compressed (2:1) DRAM to DRAM 32KB (64 * 64 * 4 * 2) / 2 R+W

Display Scanout Compressed (2:1) DRAM to PHY 16KB (64 * 64 * 4) /2 R

Total Bandwidth = (16 + 16 + 8 + 16 + 8) * 60Hz = 3.75 MB/s (33%)

24

Molehills out of Mountains!

Technique Bandwidth BW Savings Disk Savings

Base 5.625 MB/s
16 + 16 + 16 + 32 + 16

- -

+ HW compositing 3.75 MB/s
16 + 16 + 16 + 32 + 16

33% 0%

+ DXT1 Compression 2.11 MB/s
2 + 2 + 16 + 32 + 16

62% 30%

+ E2E Compression 1.17 MB/s
2 + 2 + 8 + 32 + 8

79% 30%

25

Intermission

26

Implementation Challenges

1. Currently, everything treats a framebuffer as a buffer of
pixels.

a. The main buffer is no longer just pixel data.
b. There’s another buffer! (similar to planar formats)

2. Buffer allocation, buffer import/export, and display server
protocol need to be made aware of this.

3. Applications and compositors cannot rely on compression
working everywhere.

a. Ex. Skylake doesn’t allow compression on pipe C

27

Several Solutions

1. Encode “modifiers” in fourcc format
a. V4L does this (include/uapi/linux/videodev2.h)
b. Works well for entirely proprietary formats
c. Concern about amount of bits for modifiers in DRM

i. Graphics formats combinatorially explode faster [apparently]
ii. Even 64b modifier was questioned

d. Never really considered (not sure why)
2. Intel specific plane property (original proposal)

a. Many other drivers shared similar problem.
b. KMS clients wanted a hardware agnostic mechanism
c. Protocol still required anyway

3. dma-buf metadata
a. Just a get/set IOCTL for adding modifiers to a dma-buf

https://lists.freedesktop.org/archives/intel-gfx/2015-September/075225.html

28

The Result - Modifiers

● Some support already landed
● Describes modifications to a

buffer’s layout
● Easy to add new modifiers to support

different tiling formats
● Missing some key pieces

○ Query interface
○ Protocol
○ Driver implementation

● Compression somewhat muddies the
definition

commit e3eb3250d84ef97b766312345774367b6a310db8
Author: Rob Clark <robdclark@gmail.com>
Date: Thu Feb 5 14:41:52 2015 +0000

 drm: add support for tiled/compressed/etc modifier in addfb2

29

Step 1: Compositor Negotiation

Query all “sink” APIs to find out what
modifiers are supported for the given format,
and hardware.

30

Queries

● Blobifier (KMS blob property for drm_plane)
○ What modifiers does the plane support?

● EGL extensions
○ EXT_image_dma_buf_import_modifiers

■ eglQueryDmaBufModifiersEXT
● What modifiers does my format support?
● “is used to query the dma_buf format modifiers supported by <dpy> for the given format.”

● Vulkan/WSI (WIP)
○ VK_MESAX_external_image_dma_buf.

Plumbers: Collabora (funded by Intel and Google), Google, Intel

31

Step 2: Take That and Shove It
down your protocol pipe

With the optimal modifiers in hand, some protocol will tell the client which modifiers it
might want to use.

32

Protocols

● Wayland
○ “zwp_linux_buffer_params_v1" version="3”

● DRI3.1
○ Multi-plane support
○ xDRI3GetSupportedModifiers

Plumbers: Collabora (paid for by Intel)

33

Step 3: Making BOs

Next, the client creates the
buffer either directly, or
indirectly with the formats
and modifiers it desires.

34

Buffer Creation

● EGL
○ eglCreateWindowSurface

■ Wayland
■ X11

● (Mesa) Ask over DRI3.1 what’s supported
● (Mesa) Call into DRI driver to create an image

● GBM
○ gbm_*_create_with_modifiers

● DRIImage
○ createImageWithModifiers (made for GBM)
○ createImageFromDmaBufs2 (made for DRI 3.1)

● Vulkan/WSI (WIP)

Plumbers: Collabora, Google, Intel

35

The Whole Story Thus Far

36

Display it

1. Software Compositing (Option)
a. EGL_EXT_image_dma_buf_import_modifiers
b. Much work required

2. Hardware compositing (Option)
a. drmModeAddFB2WithModifiers
b. Relatively minor changes required. AddFB2 already supported modifiers

i. Add new modifiers to drm_fourcc.h
ii. Added error checking when modifiers change plane count.
iii. Driver specific handling of modifiers.

37

He’ll Flip You (for real)

38

Preliminary Results

“Benchmark” Original CCS %improved

kmscube 1.22 GB/s 600 MB/s 51 (2x)

glxgears 1775 FPS 3900 FPS 54 (2.2x)

TRex 2.3 (.02x)

39

Takeaways

● Memory bandwidth requirements for graphics
workloads can be astronomical.

● Don’t assume texture compression is the end
of the bandwidth story.

● Modifiers “modify” the framebuffer’s pixel
layout.

● Lossless compression reduces bandwidth,
not size

○ Many GPUs support this transparently
● Hardware compositing is great.
● Getting features like this plumbed through

can easily be a multi-year effort.
● Haiku isn’t supported :/

40

Thank Yous
Platinum Level
Kristian Høgsberg, Google
Daniel Stone, Collabora

Gold Level
Rob Clark, Red Hat
Jason Ekstrand, Intel
Ville Syrjälä, Intel
Daniel Vetter, Intel

Liviu Dudau, Arm Ltd
Eric Engestrom, Imagination Technologies
Varad Gautam, Collabora
Topi Pohjolainen, Intel
Lucas Stach, Pengutronix
Emil Velikov, Collabora
Chad Versace, Google
Tomeu Vizoso, Collabora

Q&A
(not about EGLStreams)

