Linux: Reducing the cost of upstream
development to encourage collaboration

Martin Peres

Intel Open Source Technology Center Finland

November 20, 2017

Introduction
°

Summary

o Introduction

Introduction
[I}

Introduction

Introduction

Linux is everywhere

@ Most of the servers/networking equipments;

@ 80% of smartphones (Android) and 65% of tablets;
e Entertainment systems (at home, cars, planes, ...);
@ Majority of loT devices.

World domination?

No, because all products use outdated kernels!

Most products actually use forked kernels...

Introduction
oce

Introduction

Introduction

Is that a problem?

Yes, it lowers collaboration and leads to:
o Less features: All features do not get upstreamed/backported;

@ Poorer Quality/Security: Less eyes per tree, fixes duplicated.

Upstream issues
°

Summary

e Upstream issues

Upstream issues
°

Why upstream is no good for vendors?

Upstream from a vendor's perspective

Objectives of making a product
Get it as good as possible, and as quickly as possible

Challenges with upstream

@ Linux development not product-oriented:

@ Releases not in sync with products;
e Conflicting objectives: upstream wants generic solutions

@ Code sharing between drivers mandated: AMD’s DAL/DC;
@ Stable user ABIs, no user-visible regressions;
@ = Increased dev. cost and Time-To-Market (TTM)

Forked kernel?
@ Full control over the code;

| \

@ None of the above challenges!

Forked kernels' issues
°

Summary

e Forked kernels’ issues

Forked kernels' issues
.

Objectives

Issues with forked kernel

What should be done when the next product comes?

@ Re-use the previous product’s kernel? = technical debt;

@ Rebase changes: can amount to a full re-implementation.

Challenges with forked kernels

@ You don't get to shape the future of Linux:

o Out-of-tree code is not supported;
o Risk that internal changes break your features and userspace;

@ Maintenance?

Automotive products need 10+ years of maintenance;
Linux Long-Term Support (LTS) maintained for 2 years;
LTS releases only get fixes, no new features;

Rebasing generates no revenue.

Pros of upstream development
°

Summary

e Pros of upstream development

Pros of upstream development
°

Objectives

Pros of upstream development

Nice features of upstream development

@ Non-regression of the user ABlI makes updates easy;

@ Never need to rebase: Others improve Linux and your code;

Problem: Testing isn't free!

@ Unless constantly tested, a feature gets accidentally broken;

o Without continuous testing, updating isn't free!

Making testing cheaper
°

Summary

e Making testing cheaper

Making testing cheaper
®00

Objectives

How to make testing cheaper?

Reducing manual testing to 0

@ Pre-merge testing is the best way to prevent regressions;
@ Linux accepts about 8 changes per hour, in average;

@ = all testing needs to be automated!

v

Problems with automated testing

@ The full product needs to be tested;

@ Requires system-level testing;

@ = Need for better HW-assisted test suites!

A\

Making testing cheaper
ceo

Objectives

How to make testing cheaper?

Example of full product testing: Project trebble

@ Android 8 de-couples the Ul from the vendor-provided system;
@ The vendor interface is fully unit tested;

@ = could be used for continuous integration!

What can we do on our side?

@ Lead by example: provide regression free graphics!

Making testing cheaper
ocoe

Objectives

How to provide regression-free graphics?

Many dependencies

@ Improve the coverage of Open Source test suites to test:
o all graphic-related features of the kernel;
o all drivers.
e Validation HW:
o Chamelium everywhere for testing DP/HDMI/VGA and sound
o Cl platform:
running the relevant test suites on all drivers;
decentralized so as everyone can add platforms;

developped and maintained by everyone;
Controller instance hosted on fd.o?

	Introduction
	Introduction

	Upstream issues
	Why upstream is no good for vendors?

	Forked kernels' issues
	Objectives

	Pros of upstream development
	Objectives

	Making testing cheaper
	Objectives

