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Introduction

Linux is everywhere

Most of the servers/networking equipments;

80% of smartphones (Android) and 65% of tablets;

Entertainment systems (at home, cars, planes, ...);

Majority of IoT devices.

World domination?

No, because all products use outdated kernels!

Most products actually use forked kernels...
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Is that a problem?

Yes, it lowers collaboration and leads to:

Less features: All features do not get upstreamed/backported;

Poorer Quality/Security: Less eyes per tree, fixes duplicated.
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Why upstream is no good for vendors?

Upstream from a vendor’s perspective

Objectives of making a product

Get it as good as possible, and as quickly as possible

Challenges with upstream

Linux development not product-oriented:

Releases not in sync with products;
Conflicting objectives: upstream wants generic solutions

Code sharing between drivers mandated: AMD’s DAL/DC;

Stable user ABIs, no user-visible regressions;

⇒ Increased dev. cost and Time-To-Market (TTM)

Forked kernel?

Full control over the code;

None of the above challenges!
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Objectives

Issues with forked kernel

What should be done when the next product comes?

Re-use the previous product’s kernel? ⇒ technical debt;

Rebase changes: can amount to a full re-implementation.

Challenges with forked kernels

You don’t get to shape the future of Linux:

Out-of-tree code is not supported;
Risk that internal changes break your features and userspace;

Maintenance?

Automotive products need 10+ years of maintenance;
Linux Long-Term Support (LTS) maintained for 2 years;
LTS releases only get fixes, no new features;
Rebasing generates no revenue.
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Objectives

Pros of upstream development

Nice features of upstream development

Non-regression of the user ABI makes updates easy;

Never need to rebase: Others improve Linux and your code;

Problem: Testing isn’t free!

Unless constantly tested, a feature gets accidentally broken;

Without continuous testing, updating isn’t free!
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Objectives

How to make testing cheaper?

Reducing manual testing to 0

Pre-merge testing is the best way to prevent regressions;

Linux accepts about 8 changes per hour, in average;

⇒ all testing needs to be automated!

Problems with automated testing

The full product needs to be tested;

Requires system-level testing;

⇒ Need for better HW-assisted test suites!
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Objectives

How to make testing cheaper?

Example of full product testing: Project trebble

Android 8 de-couples the UI from the vendor-provided system;

The vendor interface is fully unit tested;

⇒ could be used for continuous integration!

What can we do on our side?

Lead by example: provide regression free graphics!
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Objectives

How to provide regression-free graphics?

Many dependencies

Improve the coverage of Open Source test suites to test:

all graphic-related features of the kernel;
all drivers.

Validation HW:

Chamelium everywhere for testing DP/HDMI/VGA and sound

CI platform:

running the relevant test suites on all drivers;
decentralized so as everyone can add platforms;
developped and maintained by everyone;
Controller instance hosted on fd.o?
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