
1

GLSL compiler:
Where we've been and where we're going

(2015 Edition)
Matt Turner

2

In the last year

● Added SSA-based NIR (the New Intermediate Representation)

● NIR in use by default in i965/vec4, i965/fs, vc4, and freedreno

– Net reduction of 2 backends in i965 (fs, fp → NIR/fs, vs, vp → NIR/vec4)

● Mostly stopped working on the tree-based “GLSL IR”

– 48 optimization patches to NIR

– 9 optimization patches to GLSL IR

3

In the last year... in the i965 backend

● NIR enabled by default

– Cut 12% of instructions in ARB fragment programs

● Added pass to combine immediate-value loads

– Packs 8 values into each register

– Allows unconditional use of MAD instructions!

● New conditional-modifier propagation pass

● Added flag-register dead code elimination

– Rewrote vec4 dead code elimination pass

4

(New!) shader-db

● Still a collection of 25k *.shader_test files gathered from games and
benchmarks

– Plus scripts to compile them and collect statistics

● “Runner” script replaced by nice C program using the latest goodness

– Render nodes, EGL, GBM, libepoxy

– Single process, uses OpenMP to compile shaders in parallel

– Feeds compiler stats (instruction counts, loops, spills, etc) back via
KHR_debug

– 300 second runtime reduced to 90

5

Another year's worth of compiler
improvements

● Previous year was -16.50%, so about -25% in two years

● Broadwell and newer uses scalar mode for vertex shaders

● Support for SIMD16 on Gen4 (Improved FPS of Shadowrun Returns by 20%)

● Support for SIMD16 with control flow added on Gen4 and Gen5 (ILK and
older)

total instructions in shared programs: 6615500 -> 5996928 (-9.35%)
instructions in affected programs: 6165481 -> 5575266 (-9.57%)
GAINED: 236
LOST: 154

Questions (so far)

7

IRs
(2014)

GLSL

GLSL IR

Mesa IR

TGSIi965

fragment pipeline

vertex pipeline

r200 i915 swrast

r300g r600g radeonsillvmpipe nouveau vc4 freedreno

ARB vp ARB fp

LLVM IR

8

IRs
(2015)

SPIR-V

NIR

TGSI i965 vc4 freedreno

GLSL

GLSL IR

Mesa IR

fragment pipeline

vertex pipeline

r200 i915 swrast

r300g r600g radeonsillvmpipe nouveau

ARB vp ARB fp

LLVM IR

9

NIR is here. What to do now?

● NIR is an additional IR. Hasn't simplified situation overall

● Reduce or remove optimizations in GLSL IR

– GLSL IR optimizations are inefficient and slow (and sometimes not even
effective)

– Shadertoy.com shader compiles in 25 seconds… or 5

● GLSL linking in NIR

– Would allow better pre-linking optimizations

● Get rid of Mesa IR

10

IRs
(future)

SPIR-V

NIR

i965 TGSI vc4 freedreno r200 i915 swrast

GLSL

GLSL IR fragment pipeline vertex pipeline ARB vp ARB fp

r300g r600g radeonsi llvmpipe nouveau

LLVM IR

11

What do we need?

● Buy-in from TGSI consumers to go through NIR

● How they would benefit:

– Share more code, optimizations, lowering passes (gl_ClipVertex, GL_CLAMP,
texture rectange scaling, texture projection, integer division)

– Get to delete st_glsl_to_tgsi.cpp and ir_to_mesa.cpp (NIR ↔ TGSI remaining)

– Better compile times, in some cases significantly

– SPIR-V support

– Maybe better generated code

12

What do we need to do?

● Port Mesa IR consumers to NIR (i915, r200, swrast)

● Port Mesa IR producers to NIR (FF vertex pipeline, ARB fp, ARB vp)

● Port FF fragment pipeline to NIR

● Fix-up NIR ↔ TGSI translators…?

● Of course, testing and benchmarking

Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Q & A
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

