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In the last year

● Added SSA-based NIR (the New Intermediate Representation)

● NIR in use by default in i965/vec4, i965/fs, vc4, and freedreno

– Net reduction of 2 backends in i965 (fs, fp → NIR/fs, vs, vp → NIR/vec4)

● Mostly stopped working on the tree-based “GLSL IR”

– 48 optimization patches to NIR

– 9 optimization patches to GLSL IR
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In the last year... in the i965 backend

● NIR enabled by default

– Cut 12% of instructions in ARB fragment programs

● Added pass to combine immediate-value loads

– Packs 8 values into each register

– Allows unconditional use of MAD instructions!

● New conditional-modifier propagation pass

● Added flag-register dead code elimination

– Rewrote vec4 dead code elimination pass
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(New!) shader-db

● Still a collection of 25k *.shader_test files gathered from games and 
benchmarks

– Plus scripts to compile them and collect statistics

● “Runner” script replaced by nice C program using the latest goodness

– Render nodes, EGL, GBM, libepoxy

– Single process, uses OpenMP to compile shaders in parallel

– Feeds compiler stats (instruction counts, loops, spills, etc) back via 
KHR_debug

– 300 second runtime reduced to 90
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Another year's worth of compiler 
improvements

● Previous year was -16.50%, so about -25% in two years

● Broadwell and newer uses scalar mode for vertex shaders

● Support for SIMD16 on Gen4 (Improved FPS of Shadowrun Returns by 20%)

● Support for SIMD16 with control flow added on Gen4 and Gen5 (ILK and 
older)

total instructions in shared programs: 6615500 -> 5996928 (-9.35%)
instructions in affected programs:     6165481 -> 5575266 (-9.57%)
GAINED:                                236
LOST:                                  154



Questions (so far)
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IRs
(2014)

GLSL

GLSL IR

Mesa IR

TGSIi965

fragment pipeline

vertex pipeline

r200 i915 swrast

r300g r600g radeonsillvmpipe nouveau vc4 freedreno

ARB vp ARB fp

LLVM IR
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IRs
(2015)

SPIR-V

NIR

TGSI i965 vc4 freedreno

GLSL

GLSL IR

Mesa IR

fragment pipeline

vertex pipeline

r200 i915 swrast

r300g r600g radeonsillvmpipe nouveau

ARB vp ARB fp

LLVM IR
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NIR is here. What to do now?

● NIR is an additional IR. Hasn't simplified situation overall

● Reduce or remove optimizations in GLSL IR

– GLSL IR optimizations are inefficient and slow (and sometimes not even 
effective)

– Shadertoy.com shader compiles in 25 seconds… or 5

● GLSL linking in NIR

– Would allow better pre-linking optimizations

● Get rid of Mesa IR
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IRs
(future)

SPIR-V

NIR

i965 TGSI vc4 freedreno r200 i915 swrast

GLSL

GLSL IR fragment pipeline vertex pipeline ARB vp ARB fp

r300g r600g radeonsi llvmpipe nouveau

LLVM IR
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What do we need?

● Buy-in from TGSI consumers to go through NIR

● How they would benefit:

– Share more code, optimizations, lowering passes (gl_ClipVertex, GL_CLAMP, 
texture rectange scaling, texture projection, integer division)

– Get to delete st_glsl_to_tgsi.cpp and ir_to_mesa.cpp (NIR ↔ TGSI remaining)

– Better compile times, in some cases significantly

– SPIR-V support

– Maybe better generated code
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What do we need to do?

● Port Mesa IR consumers to NIR (i915, r200, swrast)

● Port Mesa IR producers to NIR (FF vertex pipeline, ARB fp, ARB vp)

● Port FF fragment pipeline to NIR

● Fix-up NIR ↔ TGSI translators…?

● Of course, testing and benchmarking



Discussion
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