
1

GLSL compiler:
Where we've been and where we're going

Matt Turner

2

In the last year

● Committed long awaited geometry shader support (recently for Sandybridge
too!)

● Jumped from GLSL 1.40 to GLSL 3.30

● Tons of new extensions

– separate_shader_objects (4.1) gpu_shader5 (4.0)

– shader_atomic_counters (4.2) viewport_array (4.1)

– sample_shading (4.0) explicit_uniform_location (4.3)

– derivative_control (4.5) ...

3

In the last year

● Tons of easy algebraic optimizations

– Amazing (and a bit disappointing) how many programs these help

● “Vectorizing” multiple scalar operations

– Amazing how bad code from DX translators can be

● Finally implemented common subexpression elimination (kind of...)

– Only works on constants and uniforms

● Realizing more and more that a tree-based IR makes things difficult

4

In the last year... in the i965 backend

● New SEL instruction peephole, dead control flow elimination

● Significant improvements to register allocation and instruction scheduling

● Rewritten vec4 and scalar dead code elimination passes

● Lots of register coalescing improvements

● New vec4 CSE pass

● Preserving the control flow graph across all optimization passes

● Realizing more and more that we want an SSA-based IR

5

How do we measure compiler improvements?

● Benchmarking games is often tedious and has a lot of variability

● apitraces don't work for benchmarking for a number of reasons

● Optimizations often individually too small to detect FPS changes

● Would like to measure improvements in generated code more directly

6

shader-db

● Collection of shaders gathered from games and benchmarks

– Plus scripts to compile them and collect statistics

● 19599 *.shader_test files in my local checkout (GLSL and ARB vp/fp)

● Quick and easy to check whether an optimization helps or hurts real
applications

glsl: Optimize open-coded lrp into lrp.

total instructions in shared programs: 1498191 -> 1487051 (-0.74%)
instructions in affected programs: 669388 -> 658248 (-1.66%)
GAINED: 1
LOST: 0

7

GLSL code from DX translators

r1.w = inversesqrt(r7.x);
r2.w = inversesqrt(r7.y);
r0.w = inversesqrt(r7.z);
r7.x = 1.0 / r1.w;
r1.w = inversesqrt(r7.w);
r7.y = 1.0 / r2.w;
r7.w = 1.0 / r1.w;
r7.z = 1.0 / r0.w;

r7 = sqrt(r7);

vec4 cmp(in vec4 src0, in vec4 src1, in vec4 src2)
{
vec4 result;
result.x = src0.x >= 0.0 ? src1.x : src2.x;
result.y = src0.y >= 0.0 ? src1.y : src2.y;
result.z = src0.z >= 0.0 ? src1.z : src2.z;
result.w = src0.w >= 0.0 ? src1.w : src2.w;
return result;
}

vec4 cmp(in vec4 src0, in vec4 src1, in vec4 src2)
{
return mix(src2, src1, greaterThanEqual(src0, 0.0));
}

● What we get:

● What we'd like to get:

8

A year's worth of compiler improvements

● SIMD16 programs increased from 88.6% (16401/18497) to 97.8%

● 43559 programs helped, 9512 unchanged, 110 hurt

● Cut number of loops in programs by ~10%

● Cut number of basic blocks by 16.49%

● Cut number of CFG calculations by 92%

total instructions in shared programs: 5777098 -> 4823707 (-16.50%)
instructions in affected programs: 5558170 -> 4604779 (-17.15%)
GAINED: 1717
LOST: 14

Questions (so far)

10

The fires are (mostly?) out. What to do now?

● Have been reactionary for a long time

● New Steam games usually just work these days

– And if not, usually only small fixes required

● Can afford to think about longer term investments

● Lack of compiler infrastructure has hurt us in the past

– i965's fs dead code elimination pass without a CFG

11

What do we actually want? (i965 backend)

● SSA

– Existing optimization passes become more efficient and more effective

– Allows for new optimizations like GCM-GVN and divergence analysis

● An SSA-based register allocator

– Can register allocate in polynomial time! (Maybe!)

– Can make better decisions about register usage

12

What do we actually want? (glsl compiler)

● A flat (non-tree-based) SSA IR

– Wouldn't it be nice to do GCM-GVN in a place common to all drivers?

● To translate both to and from TGSI

– For drivers that don't want to write all of the same optimizations again

● Something other people (i.e., non-Intel) will also work on

Questions after
Connor's talk

	Slide 1
	Basic Title Text
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Q & A
	Slide 10
	Slide 11
	Slide 12
	Slide 13

