

Drawing Tablet
Support in Wayland

Who am I?

● My name is Stephen Chandler Paul
● I go by the alias 'Lyude'
● This is my first major contribution to the
Wayland project

● Currently a Sophomore in college.

The Current State of Tablet
Support

● What's working:
– Basic motion support
– Tool objects
– Pressure
– Distance
– Tilt
– Stylus buttons

The Current State of Tablet
Support

(cont.)
● What isn't working:

– Active area selection
– Rotation
– Tablet mice
– Pad buttons, selection wheels, touch strips,

etc.
– LEDs

What's so challenging about
drawing tablets?

● Drawing tablets are weird
● They have far more information and buttons

then most input devices do
– Tons of different tools, mice, airbrushes, pens,

pencils, etc.
– They give far more information then any other

type of input tool (tons of axes, tons of buttons,
tool serial numbers, etc.)

– Multiple tablets can be used with the same
system, so they have to all be handled
separately

libinput and tablets

 libinput before the GSoC

● No real tablet support
● Patches had been submitted for it

(courtesy of Carlos Garnacho)
– Original idea was to have tablets just be

special mice
– This was the same approach Windows and OS

X use, and the same approach Xorg currently
uses.

Tablets in libinput now

● Tablets are handled separately from mice
● This means that clients have to handle

them separately too, a disadvantage
● But the pros outweigh the cons:

– We avoid complicating the API for mice
– Easier to maintain
– While pushing everything through the cursor

is a smart approach for legacy applications,
Wayland is modern enough that this shouldn't
be necessary.

Tablet Axes in libinput

● Every time libinput receives an EV_SYN from evdev,
if any of the axes values have changed we send
the caller a tablet event event with the current
state of each axis, along with a bitfield indicating
which axes changed

● We still include the last known values of axes that
haven't updated

● [Most] axes are normalized
– This might change in the future if we can find reliable

units to return the axis values in

● The axes for tool movements are included in these
events

Normalization of Tablet Axes

● Currently, all tablet axes (except for X and Y) are normalized
● There isn't any real unit we can translate pressure into
● The X and Y axes for tilt can supposedly be translated into

degrees, this just hasn't been done yet
● Theoretically, distance could potentially be translated into

mm. The problem is we don't have any real guarantees on the
accuracy of the sensor, which seems to change depending on
the location of the tablet tool above the tablet's surface.

● Ideally we would like to avoid using normalization on all of
these axes, but right now for the most part we don't really
know how to

The libinput_tool object

● Represents a physical tool that is, or has been in use
with a drawing tablet, such as
– Pens

– Pencils
– Airbrushes
– Mice

– Mice with lenses

● Contains the physical type of tool and, if applicable,
it's serial number

● User data can be associated with each object, using
the libinput_tool_get_user_data() and the
libinput_tool_set_user_data() functions

The libinput_tool object
(continued)

● On tablets that report serial numbers for
physical tools, libinput_tool objects can be
used to differentiate multiple physical tools,
even if they're of the same type

● The lifespan of a libinput_tool extends
beyond the duration it's tool is in proximity.

● So, whenever the tool comes back into
proximity, it's always guaranteed to have the
exact same libinput_tool

● Every tool that is used with a tablet is stored in
a global tool list in the libinput seat structure

Tablets that don't report serial
numbers

● Certain tablets, namely the current Intuos and
Bamboo tablets, don't report serial numbers.

● Without serial numbers, we cannot make any
guarantee that each libinput_tool object is
associated with a unique tool

● Tools that come into proximity of tablets like these are
stored in a list of tools associated with the tablet as
opposed to the seat

● They stay valid for as long as the tablet is connected,
and are discarded when the tablet disconnects

● If desired, a program can extend the lifetime by
calling libinput_tool_ref()

Buttons

● Right now, only stylus buttons
are reported

● linuxwacom is very
inconsistent with tablet buttons

● Some devices report presses
on the tablet through the pad
device, some of them report
presses through the stylus
device

● Work is being done on
improving linuxwacom, so it's
not worth hassling with these
complications yet until the
driver's been sorted out

Touch wheels/touch strips

● Consistent (I think?), but also messy
● Touch wheels (the one on the Intuos pro

specifically) share axes that are used by the
stylus for other things

● Indicates data is coming from the touch
wheel/strip by reporting the serial number
(MSC_SERIAL) of the tool as being -1

● Again, this behavior is being fixed up in
linuxwacom

Button boxes

● One of the proposed solutions for buttons on
drawing tablets

● Represents any device that's dedicated to
housing a lot of buttons, selection wheels,
etc.

● Useful because the shortcut buttons on
Wacom can vary greatly across devices

● Good for other devices such as the Novation
Launchpad, Griffin PowerMate, etc.

The Wayland Protocol
for Tablet Devices

Status of Tablet Support in the
Wayland Protocol

● Has not been merged upstream yet
● We have a working Weston implementation, along

with a small demo application for tablets
● All of the features we support in libinput are

currently in the protocol, and are functional in the
current Weston implementation

● Basic support for using tablets with the Weston
desktop-shell is supported with the exception of
resizing windows

● Most other Weston applications still need support
added for tablets

The three new objects

● wl_tablet_manager
● wl_tablet_tool
● wl_tablet

wl_tablet_manager

● Tablets cannot be multiplexed into a
single input device

● Global object, similar to the wl_seat
object

● wl_tablet_manager is responsible for
notifying clients of new tablets and
tablets being removed

● Informs clients about each tablet, e.g. the
manufacturer, model, etc.

wl_tablet

● Responsible for actually sending all of the
input events

wl_tablet_tool

● Represents a physical tool in use with the
tablet, just like libinput_tool

● Contains the physical type of tool, along
with it's capabilities
– Certain tools have different capabilities in terms

of which axes are reported

● Sends a remove event when the lifespan of
the tool is expected to end (e.g. the tablet
for a serial-less tool disconnects from the
system)

Tablet Axes in the Wayland
protocol

● Grouped into various different events:
– wl_tablet::motion
– wl_tablet::pressure
– wl_tablet::distance
– wl_tablet::tilt

● There is also wl_tablet::frame
– Used to mark the end of a series of axis updates, analogous to how

axis events are grouped in libinput and the EV_SYN event in evdev

● Tablets are normalized from either 0 – 65535 or -65535 –
65535, since keeping the numbers as-is when converting to
fixed-width would result in too significant of a loss of accuracy

● Using 65535 also gives us a lot of leeway for avoiding overflow

Proximity in/out

● Proximity in and out events are both indicated
with
– wl_tablet::proximity_in
– wl_tablet::proximity_out

● These events are also used for indicating that
the tablet tool has simply left the proximity of
the surface it was hovering over previously

● Contain the ID of the current wl_tablet_tool
in use

wl_tablet::set_cursor

● Sets the current cursor being used to indicate the
tablet tool's location, analogous to setting the
cursor for the mouse cursor in Wayland

● Even with tablets with built in screens, having
some sort of cursor to correspond with the tablet
tool is very important

● Many tablets have issues with accuracy, so the
user always needs to know where the computer
thinks the pen actually is

● In Weston, the cursor disappears once the tablet
tool leaves proximity

wl_tablet::button

● Indicates when a button has been pressed
or released

● Buttons stay pressed down until they're
actually released, even if the tool travels to
a different surface (same behavior as
mouse buttons)

● If the tool leaves physical proximity of the
tablet, the buttons are marked as released

wl_tablet::down/up

● Used to indicate when a tablet tool begins
or finishes physical contact with the
tablet

● Same behavior as wl_tablet::button,
the tool is not marked as up until it goes
up or leaves proximity of the tablet

How wl_tablet_tools are
handled

● When a tool that a client hasn't seen before comes
into use with a tablet that the client is listening to
events from, a wl_tablet_manager::tool_added
event is sent.

● Clients aren't notified of a tool unless it comes into
proximity of a surface they own, so notifications for
preexisting tool objects aren't sent right away

● Lifetime of a wl_tablet_tool is the same as the
lifetime of a libinput_tool; forever for normal
tablets, destroyed on disconnection for tablets that
don't report serial numbers

How multiple tablets are
handled

● When a tablet is connected or
disconnected, wl_tablet_manager
notifies each client that has setup a
listener with it

● When a client connects, it is sent a
wl_tablet_manager::device_added
event for each tablet that is currently
connected to the system

Binding Tablets to Screens

● Right now, all tablets (Cintiqs and other
tablets with built in displays included) are
binded to the primary screen

● We need to come up with heuristics to
determine the characteristics of each tablet:
– The type of tablet:

● Tablet without screen
● Tablet with built-in screen
● Tablet with built-in screen on device

– What screen it should be associated with

Active Area Selection

● Allows the user to change the area of the tablet where
the tool is considered in proximity

● Useful for cropping the edges off tablets when trying to
scale coordinates for a tablet whose ratio is significantly
different from the display ratio of the monitor

● We need the user to be able to control this
– Some users may not care about ratio scaling to a certain

degree, e.g. they may not care about the small accuracy lost
when scaling to 16:9 on a 16:10 tablet

– Manual control of the active area on the tablet is already a
feature on other operating systems, notably Windows and
Macintosh

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

