
Supreet Pal Singh
EVoC Student - Nouveau

Contents
● EVoC Project

● EVoC Experience and Suggestions

EVoC Project

Implementing a Software Scripting Engine on
Fermi architecture based NVIDIA GPUs to
achieve safe memory reclocking.

How did I get to this?

1. Web Developer
2. KDE contributor
3. No clue about X development

The path

● Onsite internships
- Mozilla
- Google
- Apple

● GSoC deadline crossed

Two options

1. Android App Development
2. Nouveau

The Project

● Buying a new GPU - First NVIDIA card
● Fermi and Kepler
● Fermi memory reclocking

The problem with Fermi

 nv50
laptops -> reclock memory and
engines.

- Save power
- Default clock speed : Medium

nva3 :
- load based reclocking
- Default clock speed : 1/3 to 1/2
- Low performance on Nouveau

FERMI

- Default clock speed : 10%!!
- Miserable performance

Process of Reclocking

● nv50 style
● Put card off the bus
● wait and write MMIO registers

The main issue

● nv50 used HWSQ (HardWare SeQuencer)
● HWSQ removed on Fermi
● Replaced by PDAEMON

PDAEMON

● Full access to the registers
● Capable of IRQs
● Used for Hardware monitoring and

Reclocking
● ISA: FµC (flexible microcode)

Open-Source PDAEMON

● Work done by Martin Peres ~mupuf
- Host -> PDAEMON Communication
- Fan Management
- Works on nva3 to nvd9
- Should work on Kepler

My Proposed Work

1. PDAEMON -> Host Communication
2. HWSQ replacement
3. Documentation

PDAEMON -> Host

● Ring Buffer
- *GET / *PUT
- *PUT writes
- *GET reads

● Each process sends 4 params
 1. Process Id

2. Message Id
3. Payload Size
4. Payload pointer

Basic checks

● Stop writing if buffer not read
● Stop reading if buffer empty
● Do not read if writing not complete
● Write if reading not complete
● Wrap around

Status

● PDAEMON -> HOST
- TESTED
- MERGED

Fermi Scripting Engine (FSE)

● HWSQ replacement
● Capable of memory reclocking

FSE Implementation Process

1. Understanding HWSQ
2. Designing the ISA
3. Implementing it in FµC

FSE Design

1. Full range Delay
2. Short range Delay
3. MMIO write
4. MMIO mask
5. MMIO wait
6. PDAEMON -> HOST message

Delay Implementation

● Short range:
- 16bit Nano seconds
- 16bit Micro Seconds

● Full range
- 64bit Nano seconds

● Write
- 8bit and 32bit

● Mask
● Wait

Send_msg

● Hooks up with PDAEMON->Host
● Takes two params

○ SIZE
○ MESSAGE

Unexpected Hurdle

● Planned demo for XDC
● Unaligned memory access
● Implemented ld_32 , ld_16 and ld_08

Current Status

● Most of it tested and working
● Send_msg needs to support "msg_id"
● Send_msg needs pass testing

Documentation

1. Blogpost introducing Nouveau basics
2. Complete EVoC documentation on blog
3. Intro.txt by mwk in envytools
4. More Documentation for Newbies!

// Beginner's Guide to KDE Development

Wrap Up

1. PDAEMON -> HOST :success
2. FSE : send_msg testing left
3. Documentation - Intro.txt & blogpost

EVoC

● Endless Vacation of Code
● Propose a 13 week (3 Month) Project
● $5000

○ $1000 upfront
○ $2000 mid-term
○ $2000 completion

● Can start anytime

EVoC suggestions

● Flexibility == Good
● Need more specific rules != Refer GSoC
● Selection completely on Mentor
● PreRequisites on Wiki
● Open Mentors listed on Wiki

Thoughts on proposition by Martin

● Patch requirement compulsory?
● Limit a student to 2 EVoCs? NO?!
● Limit a student to 1EvoC/year? Yes.
● Upfront payment low? Yes.
● 3 Month engagement before project? No!

1. Something for Mentors?
2. PUBLICIZE!

Links

1. https://gitorious.org/pdaemon
2. supreetpal.blogspot.com
3. IRC nick: supreet
4. Email : supreetpal@gmail.com

https://gitorious.org/pdaemon
https://gitorious.org/pdaemon
http://supreetpal.blogspot.com
http://supreetpal.blogspot.com

