
simon.thum@gmx.dePredictable pointer acceleration

Predictable pointer acceleration

● Overview
● The problem

– In theory and practice

● The solution
– Selected details

● Impact
– Guidelines for input drivers

● Outlook

simon.thum@gmx.dePredictable pointer acceleration

Ad-hoc census

● Who noticed a change in pointer behaviour ?
● Who changed settings in response ?
● Who even switched profiles or did other experiments ?

simon.thum@gmx.dePredictable pointer acceleration

From 10.000 feet

● X pointer acceleration previously
– Very simple
– Often seen as inadequate
– It 'feels bad'

● longstanding issues
– No scaling in dix

● Leads to driver side scaling
– distributed buffers

– Parallel acceleration (synaptics)
– Sometimes overshoots

➔ One could do better

simon.thum@gmx.dePredictable pointer acceleration

The problem - in theory

● Useability depends on predictabililty
● The brain knows velocity, the computer knows mickeys

– Mickeys and velocity correlate
– (but that's pretty much all there is)

● With acceleration, there's a disconnect
– The X user is forced to learn how his mouse generates

mickeys

➔ Need to restore the feedback loop
➔ Talking about the same thing is a good start

➔ users should have more control

simon.thum@gmx.dePredictable pointer acceleration

The problem - in practice

● Mickeys just don't suffice
– Mickey is [L], velocity is [L*T-1]

– Dynamic range is very low
● Slow motion: ~ 1:3, uneven

– 'High-Performance' devices: trade dynamic range for
responsivity

● Faster: ~1:15

– Blocked X jeopardizes mickey

● Resulting acceleration varies
➔ We need a proper velocity

➔ Have it or fake it

Data flow
(abbrev.)

Input
mickey

Multiply

On-screen
motion

Velocity
estimation

Device
velocity

Profile
Acceleration

factor

simon.thum@gmx.dePredictable pointer acceleration

From mickey to velocity

1)Divide by delta time
✔ Great for estimating slow motion
✔ Bumps dynamic range - 1:50 easily
– Still very dependent on individual Mickeys
– Creates need to scale estimate

● Velocity is pixel per scale milliseconds

2)Tracking velocity with filters
✔ Even and dynamic velocity
— responsivity

➔ 'Good estimation' becomes 'good filter setup &
selection'

simon.thum@gmx.dePredictable pointer acceleration

Velocity tracking

● Multiple filters
● Short half-life: tight tracking
● Long half-life: smooth 'average'
● Better stability by design

● Select good filter by divergence
● Details may change

● Sometimes override filters (coupling)
● Responsive
● Good compromise esp. for 1 filter
● Responsive to noise too

Input
mickey

on-screen
motion

Mulitply

Smooth

Divide by ∆t

Filters

Select
result

Profile

Device
velocity

Constant
deceleration

Threshold
and acceleration

Primary User controls

simon.thum@gmx.dePredictable pointer acceleration

Velocity and then ?

● Profiles
– Translate device velocity to acceleration factor
– To be chosen on individual preference
– Should be smooth to be intuitive

● Previously they weren't

● Adaptive deceleration
– Great for precise pointing

● Constant deceleration
– better adapt to a large device range

simon.thum@gmx.dePredictable pointer acceleration

Impact

● Scaling in drivers considered harmful
– Except to suppress errors
– Better postpone scaling to avoid multiple independent

buffers (remainders)
– precision otherwise unavailable

● API allows to coordinate on scaling or acceleration
– it's not neccessary for a driver to benefit
– Main use: postpone scaling
– driver-specific profile

● Pressure or other sensor input

simon.thum@gmx.dePredictable pointer acceleration

Outlook

● Expose device properties
– Cool UI stuff
– Upload user-defined profiles

● More numerical stability
– Change default acceleration

● Accelerate e.g. Z axis
● velocity and sub-pixel position

– Make some sense now
– could be of use down the chain

● Move more transforms into dix
– AngleOffset

